| | September 20199CIOReviewtwo countries account for more than half (56%) of all of the papers by the top six nations between 2004 and 2013. (Sources: Digital Science; Clarivate). Germany, Britain, Japan and Canada make up the remaining 44%.Countries concentrating on quantum computing have varying objectives. China is focused on creating a quantum-key-distribution satellite communication network with some major Chinese telecommunications providers to connect two networks 3,000 kilometers apart. The goal appears to be a secure, robust, high bandwidth solution that would rival or surpass current fiber connections through satellites, which requires much less physical infrastructure. South Korea and the United Kingdom have embarked on major initiatives to link cites within their respective countries with quantum networks. The capital of Australia is setting up a closed government quantum network. China's ambitions are lofty, South Korea and the U.K. are slightly more modest and Australia's goal seems readily attainable.The European Telecommunications Standards Institute (ETSI), is working to set up a global standard for quantum-cryptography, indicating that the European Union is also taking the emergence of quantum networks as viable and important.The notion of quantum supremacy is a quantum computer that exceeds the power of the most powerful supercomputer in the world. This is not yet a reality and furthermore, is a moving target because the fastest computer in the world continues to getting faster with time, thereby creating a greater gap. However, most authorities believe we are approximately 10 years away A key question to consider is how the quantum computer of the future will be deployed. Unlike the microcomputer that evolved into first, the personal computer and then the smartphone, quantum computing will be cloud based. We will tap into its processing power from our endpoint devices. Today, that means a Google glass-like device, such as a watch, phone or a PC. Notably, I believe the phone user interface will change as we enhance and deploy advances in personal technology. Simply put, people were not designed to walk around while holding a phone to their faces. The critical question still remains: what will this technology do? Shor's algorithm reverse engineers RSA encryption. This means a new encryption capability will likely result. Importantly, artificial intelligence is more suited towards quantum computing than traditional computing. There are already numerous every-day uses of artificial intelligence and its uses continues to grow. I expect the progress of quantum computing and the reliance on artificial intelligence to grow together and usher in a new era, supported by the baseline data and foundational infrastructure we leverage today. John Shea was named by Wall Street & Technology Magazine in their 2007 Gold Book as one of the top financial technology executives. In 2013, John was awarded Boston Business Journal's CIO of the Year Award, which recognizes the top innovators who keep their companies running ahead of the curve. John is on the board of directors for First Literacy, Rose Fitzgerald Kennedy Greenway Conservancy and Anna Maria College. I expect the progress of quantum computing and the reliance on artificial intelligence to grow together and usher in a new era, supported by the baseline data and foundational infrastructure we leverage todayJohn Shea
<
Page 8 |
Page 10 >