| | MAY 20198CIOReviewThe continued development of regulatory frameworks around the world has enabled the quick adoption of Unmanned Aerial System (UAS), commonly known as drone, technologies across an ever-growing range of applications. Many of these implementations have become straightforward given the utility and ease of use made possible through cost effective and capable consumer grade and professional aircraft, sensors, software, and support equipment now on the market. Much can be accomplished under established guidance or waiver processes including Title 14 Code of Federal Regulations Part 107, which is issued by the Federal Aviation Administration (FAA). Following these regulations, commercial operations supporting a broad range of activities in real estate, inspections, mapping, precision agriculture, environmental studies, first responder deployments, and many other missions are easily understood and within reach of professional operators.However, there are still many benefits to be realized through the full integration of UAS in the National Airspace System (NAS) in the United States and elsewhere in the world. The ability to operate civil UAS at night, over populated areas, at higher altitudes and faster speeds, and at distances beyond the view of the operator without the need of restrictive waivers to regulation promises to increase the utility and effectiveness of UAS many times over. The challenge is it is difficult to gain experience in these operations in general, a task made more demanding when they are specifically tailored to desired use cases. However, this is vital to inform the further development of regulation and policy to make the complex missions more common.One way to develop, test, and implement Concepts of Operation (ConOps) related to UAS in complex operational or regulatory limited environments is to leverage Live, Virtual, and Constructive (LVC) capabilities. In LVC research or mission focused environments, live assets involve real participants operating real systems, virtual components include real participants engaging through simulated systems, and constructive elements involve simulated actors and systems. All three component types of a LVC exercise are integrated using software and appear to be operating in the same environment. Live assets may include traditional or unmanned aircraft transmitting telemetry or Automatic Dependent Surveillance Broadcast (ADS-B) positional information and video from sensors, cellular position inputs from ground THE VALUE OF INTEGRATED OPERATIONS AND SIMULATION IN ADVANCING UNMANNED AERIAL SYSTEMS APPLICATIONSBy Dr. Andrew D. Shepherd, Executive Director and Chief Scientist, Sinclair College National UAS Training and Certification CenterDr. Andrew D. Shepherd
<
Page 7 |
Page 9 >