| | December 20188CIOReviewIt was 2011; a year that may be considered the beginning of IT/OT convergence. LTE was the new technology on the block; touting fast ethernet speeds from almost anywhere. Machine to Machine (M2M) communications between industrial control system (ICS) devices was becoming a cost effective way to improve the reliability, redundancy, and operational timeliness of the nations' critical infrastructure. To pave the way for this radical change, the way devices responsible for controlling electric, gas, and water commodities communicate, an even more radical change of the status quo was required; the merging of the traditionally separate information technology and operational technology paradigms. Traditionally, operational technology was physically air gapped from the internet. Often ICS devices lived on their own network (OT), completely separate of the corporate's network (IT). This physical separation was intentional. OT systems are antiquated, often using technology that is far behind their IT counterparts. Their lack of recent technology was often due to the "if it ain't broke, don't fix it" approach. OT systems require slow, steady reliability, and uptime is far more important than the latest way to move or view data. With a tradition of air-gapping, and running decades old technology, cyber-security was never a priority in the OT realm. That is of course until the convergence with IT began, and the difficulty of protecting our critical infrastructure became that much more problematic.It is often said that the next major war won't be fought on the battlefield, but within the cyber world. Hospitals, banks, and critical infrastructure are the first targets a nation state will attack. You disable these three industries, and you will have crippled the country. Hospitals and banks have taken cyber-security seriously for years; even decades. Critical infrastructure, on the other hand, has been far behind; mostly due to this traditional separation of IT and OT.Early this year a frightening rumor began to churn: Russia had successfully hacked the electric grid of the United States, and had the opportunity to turn off electricity. More recently in July of this year, the Department of Homeland Security (DHS) and the National Cybersecurity and Communications Integration Center (NCCIC) provided an in-depth de-briefing and confirmed this rumor with great detail. The attack was unique, sophisticated, and designed to avoid all traditional cyber-security technology. The attack began with staging targets: smaller organizations with pre-existing relationships to the energy sector, having less sophisticated networks. From these staging targets, the hackers then moved on to their intended targets: electrical generation, transmission, and distribution companies that have employed sophisticated networks and more defensive cyber tools. Proceeding to a credential harvesting stage of the intended targets, the hackers used phishing and watering hole techniques. Hackers sent emails, built upon the trusted relationships with their vendors, attached with legitimate files but no malware. Instead, these files, once saved to the locale disk, would point to a file://corporation site looking for a normal.dot or shortcut image icon file using the time tested SMB protocol. Upon this file request, the server would request the client credentials, the victim would provide a user hash, and then the server provides the requested file. Voila, full user credentials. The hackers would then proceed to single-authenticated vpn.corportation.com and gain full-permission access to the converged IT/OT network. Even a full password reset would not stop the attack, since any refresh SECURING CRITICAL INFRASTRUCTURE WITH ARTIFICIAL INTELLIGENCEBy Ian Fitzgerald, CIO, Truckee Donner Public Utility DistrictIN MYOPINION
<
Page 7 |
Page 9 >